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Abstract. This paper proposes and demonstrates design catalogues as a computationally 
efficient method for identifying improved designs for complex technological systems. This 
new process significantly speeds up the analysis of systems that will operate and will be 
managed under various uncertainty scenarios. It enables analysts to explore the design space 
more fully, taking into account a greater number of design parameters and variables. It can 
lead to design solutions with greatly improved lifecycle performance. The design catalogue 
consists of a small subset of designs that collectively perform reasonably well over a range of 
possible scenarios. The catalogue approach contrasts with the usual approach that optimizes 
designs for each scenario, and thus can only afford to examine a limited number of situations. 
Each design in the catalogue consists of combinations of design variables, parameters, and 
flexibility decision rules. The set of designs in the catalogue is determined using adaptive 
One-Factor-At-a-Time (aOFAT) analysis. An example demonstrates the use and how it leads 
to improved lifecycle performance compared to a standard benchmark design. 

Introduction 
Engineering systems are characterized by a high degree of technical complexity, social 
intricacy, and elaborate processes aimed at fulfilling important functions in society (ESD 
2011). Given they are typically long-lived (+20 years), they face much uncertainty at 
strategic, tactical, and operational levels. Examples engineering systems include critical 
infrastructures for defense, emergency services, power generation and distribution, 
telecommunications, transportations, and housing. 
 
From a computational standpoint, the design of engineering systems today is a daunting task 
(Braha, Minai, and Bar-Yam 2006; de Weck, Roos, and Magee 2012). As summarized in 
Table 1, it involves modeling and optimizing basic infrastructures (e.g. plants, networks, etc.) 
considering a wide array of uncertainty scenarios (e.g. market demand, price, regulations) 
over long-term horizons. There can be many possible architectures and operating modes (e.g. 
number and size of plants, routing of vehicles on network, allocation of production lines to 
products, etc.) The system can also be evaluated based on many lifecycle performance 
indicators (e.g. net present value (NPV), return on investment (ROI), etc.) It is practically 
intractable to consider exhaustively all possible design combinations and alternatives. 
 
 
 



Table 1 Full analytical problem for designing engineering systems (Cardin 2007) 

Initial Design Uncertain 
Variables Managers Adjust Lifecycle 

Performance 
Physical 
infrastructure 
 
 
 
(Many possibilities) 

Price, demand for 
services 
 
 
 
(Many possibilities) 

Best use of existing 
facilities; 
development of 
additional facilities 
 
(Many possibilities) 

Realized net 
present value, rate 
of return, etc.  
 
 
(Many possibilities) 

 
A typical approach in engineering design and complex project evaluation is to simplify the 
full analytical problem. Instead of considering many scenarios of periodical data, designs are 
often optimized for the most likely projection of major uncertainty drivers (Braha, Minai, and 
Bar-Yam 2006; Eckert et al. 2009). Typical project evaluation approaches based on 
discounted cash flow (DCF) analysis, such as NPV, does not account for the fact that system 
operators will react periodically to enhance the system performance (Trigeorgis 1996). Also, 
design decisions are often based on one evaluation metric like internal rate of return (IRR), 
NPV, or ROI. The combination of such practices in systems design and evaluation can lead to 
sub-optimal choices, and even economic failure (Cardin et al. 2012). 

Flexibility in Engineering Systems Design:                   
Computational Challenges 

There has been a great deal of effort over the last two decades to improve standard design and 
evaluation practice by making more explicit considerations of uncertainty. Flexibility in 
engineering design is one approach, which aims at designing an engineering system so it can 
adapt and change pro-actively in the face of uncertainty in environment, markets, regulations, 
and technology (de Neufville and Scholtes 2011; Nembhard and Aktan 2010). It is a different 
design paradigm from, for example, design for robustness, which aims at making systems 
function more consistent and invariant to changes in the environment, manufacturing, 
deterioration, and customer use patterns (Jugulum and Frey 2007). In the literature, flexibility 
in design is often referred to as a real option embedded “in” the system (Mikaelian et al. 
2011; Wang and de Neufville 2005). Flexibility can improve expected lifecycle performance 
by affecting the distribution of possible outcomes. It reduces the effect from downside (like 
buying insurance), risky scenarios, while positioning the system to capitalize on upside, 
favorable opportunities (like buying a call stock option). For example, the 25 de Abril bridge 
connecting Lisbon to the municipality of Almada in Portugal was originally designed to carry 
four car lanes. Engineers accommodated the design for more car lanes if needed in the future, 
as well as a railway on its lower platform, should usage and demographic patterns warrant it. 
This flexibility in design later allowed expansion to the current six car lanes and two-railroad 
tracks infrastructure seen today. This strategy required a smaller initial investment than if full 
capacity was deployed, and deferred additional costs to the future, taking advantage of the 
time-value of money. It also enabled more traffic between the two cities today, contributing 
to a growing economy.  
 
Flexibility has shown improvements typically ranging between 10% and 30% compared to 
the outcome from standard design and evaluation practice in different industries: strategic 
phasing of airport terminals development (de Neufville and Odoni 2003; Gil 2007), offshore 
platforms designed for future capacity expansion (Jablonowski, Wiboonskij-Arphakul, and 
Neuhold 2008), strategic investments in new nuclear plant facilities (Rothwell 2006), supply 



chain adaptation to fluctuating exchange rates (Nembhard, Shi, and Aktan 2005), strategic 
investment in innovative water technologies (Zhang and Babovic 2012), etc. Examples 
abound.1 
 
An important issue in designing engineering systems for flexibility is the complexity of the 
analytical problem. In addition to the many design variables and parameters to consider, 
designers need to account for a wide range of uncertainty scenarios, periodic managerial 
adjustments, and evaluation metrics. The case of Lin et al. (2009) illustrates the issue, 
working on the design of an oilrig with a major oil company. The company would use a 
highly complex model for the oil and gas infrastructure system, and optimize the design 
based on average historical price, and most likely original oil in place (OOIP) quantity (i.e. 
estimated reserves). Optimization for only one combination of oil price and OOIP scenario 
would require at least a day of intensive computations. If only three distinct price scenarios 
were considered in each year of a 20-year lifecycle (i.e. typical lifetime for such asset), the 
number of design configurations to investigate would be 320 ~3.5 billion. Consideration of so 
many scenarios is, as a practical matter, intractable, let alone with additional degrees of 
freedom stemming from explicit considerations of flexibility in design and management. 
 
In essence, the problem addressed in this paper is that the analysis of performance of an 
engineering system under uncertainty requires a special design or operating plan for each 
scenario. The definition of such plans and their lifecycle performance requires a lot of time 
and analytical resources, as exemplified above, so analysts can only look at a very few 
designs fully. Therefore, solutions possibly improving lifecycle performance cannot be 
examined due to time and analytical constraints. 

Proposed Solution 
This paper addresses this issue by devising a priori a set of operating plans or models that 
together deal reasonably adequately with a range of uncertainty scenarios. This speeds up the 
analysis for the most relevant plans, allows analysts to consider more design alternatives, and 
enables uncovering better design solutions with improved lifecycle performance. The 
proposed solution suggests a middle-ground approach standing between the simplest set of 
assumptions typically made in design and evaluation, and the full analytical problem 
summarized in Table 1. It relies on a representative range of possibilities small enough to be 
manageable analytically, and broad enough to enable a more informed analysis of the design 
problem. The aim is to provide a practical approach leading designers to rapid lifecycle 
performance improvements by explicit considerations of flexibility. It is also efficient in 
terms of the computational and analytical resources required. 
 
Design Catalogues. The method simplifies the analysis by relying on the concept of a design 
catalogue. The catalogue provides a limited number of scenarios and responses intended to 
describe relevant patterns designers might wish to anticipate. An operating plan is therefore a 
combination of design variables, parameters, and flexible decision rules to manage the 
engineering system in operations, and over its lifecycle. For instance, instead of considering 
explicitly all possible 3.5 billion price scenarios, only a handful representative scenarios are 
considered. One operating plan is created to suit each scenario, thereby creating the 
catalogue.  
 
                                                
1 More case studies are available at http://ardent.mit.edu/real_options/Common_course_materials/papers.html, 
http://strategic.mit.edu/publications.php, and http://seari.mit.edu/publications.php. 
 



Representative uncertainty scenarios can be selected based on different criteria, and operating 
plan crafted to deal best with each scenario. For example, consider a scenario where prices 
rise steadily at first, and start falling after some time. Another possibility is for prices to start 
low for the first few years, and then incur a sudden surge due to high demand. Volatility 
around the main trend may vary between low, medium, and high values. In each case, a 
different flexible response might be required, and better supported by a different flexible 
design configuration. The catalogue contains the flexible design alternatives that cope most 
appropriately with each scenario. 
 
The concept of catalogue is analogous to customers buying suits, typically coming in many 
sizes and shapes. While it is possible to hand-tailor suits for each customer, this can be 
demanding in terms of manufacturing and operations. One alternative is to have a range of 
suits (i.e. a catalogue) that will reasonably fit any of the customers’ needs. The items in the 
catalogue provides a range of choices varying along several dimensions – as in the example 
below Table 6 – and as in real life (e.g. tall, short, large, thin, etc.). 
 
Decision Rules. A decision rule defines the trigger point or mechanism at which time it is 
appropriate to exercise a designed flexibility. It aims to simulate an appropriate decision 
taken by the system operator or manager at any given point in time to adapt the system to 
arising conditions. Such rule is typically based on the observation of a given uncertainty 
source (e.g. demand, price, technological performance) to which the system is called to react. 
It is crucial for determining the lifecycle performance improvement and value-added by 
flexibility compared to standard design approaches. In the example of the 25 de Abril bridge, 
a hypothetical decision rule could have been that if traffic demand reached a certain threshold, 
additional lanes would be added. If traffic demand increased even further, this would warrant 
development of the railroads on the lower platform. While it is unclear what decision rule 
was used in this case, it is clear that the decision to expand capacity was based on observed 
changes in the main uncertainty drivers (e.g. availability of EU funds, prospects of land boom 
on South shore, etc.) Decision rules aim at capturing such managerial decisions to be 
included in the modeling. 
 
A decision rule simplifies the analysis compared to full optimization on each uncertainty 
scenario. This is because it only requires “looking back” over the information provided up to 
a certain point in time. Typical stochastic or dynamic programming algorithms used in 
standard real options analysis (Copeland and Antikarov 2003; Dixit and Pindyck 1994) 
consider the best sequence of decisions over the entire scenario period. On the one hand, this 
may not be realistic in an engineering context because a decision-maker does not know a 
priori how the future will unfold. Also, the number of possible combinations explodes 
exponentially as a function of the number of time periods – or stages – also making the 
problem quickly intractable.  
 
Design Space Exploration. The aim of the proposed approach is to reduce the complexity of 
the analysis. It focuses on investigating a suitable combination of physical design variables 
and parameters together with flexible decision rules available to better handle uncertainty. 
This abstract combinatorial space is referred in this paper as “design space”. The approach 
structures the process of exploring the design space under considerations of uncertainty and 
flexibility, while still being tractable computationally. 
 
The exploration process is inspired from the adaptive One-Factor-At-a-Time (aOFAT) 
fractional factorial algorithm by Frey and Wang (2006) used in statistical design of 



experiments (DOE). The approach consists of starting at a particular design combination (or 
factor level), and measuring the lifecycle performance obtained using a system model. One of 
the factor levels is then toggled to another level, and another performance measurement is 
taken. If the objective function is improved, the change is kept, and the analysis moves on to 
toggling another factor and level. If the response is not improved, the change is discarded, 
and another factor level is explored. The algorithm goes in sequence until all factors levels 
have been explored once. 
 
This process reduces the number of search iterations tremendously, while still reaching a 
good solution. Frey and Wang (2006) showed that in a design space with n factors with 
2-levels each, aOFAT reduces the number of experiments from 2n to n + 1, while still 
reaching on average nearly 80% of the optimal response. The main motivation for using 
aOFAT is the good tradeoff it provides between computational efficiency and precision. 
 
The remainder of the paper is organized as follows. In the next section, a short review of the 
literature is presented to highlight previous efforts in addressing this computational design 
problem. The methodology section explains how the design catalogue is developed, and how 
to evaluate flexible design alternatives. An example application is presented for the analysis 
of a public infrastructure system. Results, findings, validity, and limitations of the framework 
are discussed, together with possible avenues for future research, followed by conclusions. 

Literature Review 

Conceptual Process 
The conceptual process of designing engineering systems for flexibility typically requires 
five phases depicted. The process starts from an initial design, obtained by means of existing 
and/or standard design procedures (phase 1). This phase is necessary to circumscribe the 
initial design space, as it is difficult to consider flexibility without an initial design. A review 
of current procedures to generate initial design alternatives is provided by Tomiyama et al. 
(2009). The major uncertainty sources affecting lifecycle performance are recognized, 
modeled, and incorporated explicitly in the process (phase 2). Flexibility strategies are 
generated to deal with these uncertainties, and enablers are identified in the design (phase 3). 
The design space is explored systematically to find flexible design alternatives leading to 
improved lifecycle performance, as compared to the baseline design (phase 4). Phase 5 
oversees phases 1-4 to create a productive collaborative environment for designers. More 
details on this process and suitable procedures for each phase are provided in Cardin (2012). 

Design Space Exploration 
This paper is mainly concerned with design space exploration (phase 4). This phase involves 
developing efficient computational methods and search algorithms to find the most valuable 
flexible design configurations, subject to a range of design variables, parameters, decision 
rules, and uncertainty scenarios. This phase requires modeling explicitly the flexible design 
concepts generated in phase 3. For example, the flexible design concept explored in the case 
of the 25 de Abril bridge is capacity expansion. This could give rise to a wide range of 
flexible design alternatives with different decision rules. One could design additional capacity 
for one, two, or three extra lanes when user demand reaches threshold T, account for one or 
two additional rail tracks, etc. Given T alone can take on any value, there is are infinite 
combinations of physical design variables and decision rules, each leading to a different 
lifecycle performance outcome. The design procedures in phase 4 provide systematic ways to 
search effectively through this combinatorial space. 



 
The methods in phase 4 typically integrate real options analysis tools based on dynamic 
programming and economics (Bellman 1952; Cox, Ross, and Rubinstein 1979; Dixit and 
Pindyck 1994; Trigeorgis 1996) with standard optimizations and statistical techniques to 
assess the lifecycle performance of flexible design alternatives. To tackle this computational 
problem, Jacoby and Loucks (1972) first suggested screening methods to identify most 
promising design alternatives within reasonable time. de Neufville and Scholtes (2011) 
suggested three types of screening methods: bottom-up, simulators, and top-down. Bottom-up 
models use simplified versions of a complex, detailed design model. Simulators incorporate 
statistical techniques (e.g. response surface modeling) and/or fundamental principles to 
mimic the response of the detailed model. Top-down models use representations of major 
relationships between the parts of the system to understand possible system responses (e.g. 
systems dynamics). 
 
Wang (2005) was first to apply screening methods for design space exploration in the context 
of flexibility. He applied his approach to the analysis of water infrastructures in China. Lin 
(2009) developed a bottom-up screening model of an integrated oil and gas system to identify 
valuable flexible design alternatives in an offshore oil platform system. Yang (2009) used a 
response-surface methodology coupled with fractional factorial analysis to explore flexibility 
in the car manufacturing process. Hassan and de Neufville (2005) used genetic algorithms to 
structure the search process in oil platform design and planning. Olewnik and Lewis (2006) 
extended a utility-based framework to the context of flexibility in product development. Ross 
(2006) proposed Multi-Attribute Trade space Exploration (MATE) based on Pareto-optimal 
configurations. This process exploits tradeoffs between design performance utility attributes, 
and lifecycle cost. 

Research Gap 
The methods above all depend on simplifications of a system model. Simplifications, 
however, can be a difficult to achieve for many reasons, depending on the context. For 
example in bottom-up methods, it may be unclear what parameters to simplify. Should 
designers simplify considerations of demand and price to make the model run within 
reasonable time? Are there other factors more important to consider? In the case of simulators, 
it is unclear what is the best sampling mechanism to create the response surface. Different 
sample points may lead to different response surfaces, and different optimal design solutions. 
In top-down models used in systems dynamics, a deep understanding of the system’s 
underlying feedback and feedforward mechanisms is required (Sterman 2000). Building such 
model requires intensive field research and data collection (Steel 2008), which can be 
constraining. In addition, for a variety of practical reasons (e.g. time and resource constraints), 
there might be situations where practitioners cannot use screening methods. In this case, it 
might be better to work directly from the model at hand, even if the model has high 
complexity. The methodology detailed in the next section introduces a complementary and 
practical way to address the above issues. 

Methodology 
Table 2 below summarizes the design catalogue approach. The approach considers a handful 
of representative uncertainty scenarios (e.g. 5-10) and associated flexible responses to each 
scenario. The catalogue approach enables designers to consider several lifecycle performance 
metrics, depending on the decision-making environment. 
  



Table 2 A design catalogue approach for designing engineering systems for flexibility 

Initial Design Uncertain 
Variables Managers Adjust Lifecycle 

Performance 
Physical 
infrastructure 
 
 
 
(Many possibilities) 

Price, demand for 
services 
 
 
 
(5-10 scenarios) 

Best use of existing 
facilities; 
development of 
additional facilities 
 
(5-10 responses) 

Realized net 
present value, rate 
of return, etc.  
 
 
(Several) 

 
The general methodology for developing a design catalogue has five steps: 
 

1- Develop a basic model for measuring lifecycle performance 
2- Find representative uncertainty scenarios affecting lifecycle performance 
3- Identify and generate potential sources of flexibility in design and management 
4- For each uncertainty scenario, find the most appropriate flexible operating plan and 

construct the catalogue using the aOFAT fractional factorial algorithm 
5- Assess lifecycle performance improvement – if any – using the design catalogue as 

compared to the baseline design under uncertainty 

Analysis and Results 
This section demonstrates application of the five-step process. The objectives are to 
demonstrate that the design catalogue technique 1) can improve expected lifecycle 
performance compared to a baseline design typically more rigid (i.e. inflexible), and 2) is 
computationally efficient compared to an exhaustive search. The former objective 
demonstrates the value of embedding flexibility in engineering systems. The latter shows that 
the technique is useful particularly when computational efficiency is required. 

Case Study 
The case study is inspired from the development of a multi-level parking garage near the 
Bluewater commercial center located in the surrounding of London, United Kingdom. The 
analysis is based on the model presented in de Neufville et al. (2006). Following a process 
similar to that described in the Conceptual Process section, the authors showed that flexibility 
embedded in the design improved expected lifecycle performance compared to a more rigid, 
baseline design. The baseline design would account for six initial floors, providing the 
optimal NPV based on the most likely forecast of parking space demand.2 Embedding 
flexibility in the design enabled capacity expansion when demand was higher than installed 
capacity. This flexibility was enabled physically by building stronger columns to support 
additional floors. 
 
The authors showed that the main source of value was the ability to expand capacity when 
needed. A smaller initial design with four floors instead of six would prevent unnecessary 
investments in unused capacity. This would lower initial capital expenditures and exposure to 
downside risks in case demand was weaker than expected. It would also position the system 
to capture upside opportunities, in case more demand materialized. The authors showed a 
clear improvement in expected lifecycle performance (i.e. E[NPV]) for this design strategy, 

                                                
2 This initial evaluation is representative of the best practices in this industry. 



as compared to an inflexible six-floor design. The evaluation approach led to a completely 
different design (i.e. four initial floors with stronger structure and columns to support 
expansion) than one based on a standard design approach. The authors only explored the 
value of one decision rule, however, which was to expand when demand exceeded capacity 
for two consecutive years. They did not explore other combinations of decision rules and 
design variables. Application of the design catalogue technique shown next enables a more 
thorough exploration of this design space. 

Application 
Step 1: Basic Model Development. Application of the catalogue approach starts from the 
development of a basic model enabling quantitative lifecycle performance assessment of 
design alternatives. Here, an economic DCF model is used, inspired from the data reported in 
de Neufville et al. (2006), and summarized in Appendix (Table 8). Net present value (NPV) 
is the objective function (O) for measuring economic lifecycle performance of different 
design alternatives. The model implements the following relationships between the design 
variables (DV), design parameters (DP), and constraints (C): 
  

NPV = Rt −Ct
(1+ r)tt=0

T

∑    ( 1 ) 

 
Rt = min(Dt, kt)p, t ≥ 0   ( 2 ) 

 
kt = n0 ft

t=0

T

∑
    

( 3 ) 

 
kt ≤ n0fmax, t ≥ 0    ( 4 ) 

 
C0 = cc0 + cf + cl   ( 5 ) 

 
Ct = ktcr + cl + ce, t > 0   ( 6 ) 

 
Dt = Df – αe-

β
t     ( 7 ) 

 
Equation 1 shows how to compute NPV, which is the sum of DCF. Equation 2 states that 
revenues in any given year t are capped by installed capacity kt. Equation 3 constrains 
installed capacity kt at time t to be the sum of parking spaces built in each previous years, 
plus the number of floors ft added at time t. In the inflexible system, k0 = n0f0, the initial 
capacity of the system, and ft = 0 ∀ t, since no expansion is possible. For the flexible system 
described in step 3 below, ft ≠ 0 because expansion may occur as demand changes. Equation 
4 explains that the total number of floors is capped at fmax such that kt in any given year does 
not go beyond n0fmax. Equation 5 shows that cost at year 0 (C0) is given by the total 
construction cost cc0, the cost of acquiring the flexibility to expand3 cf (i.e. the stronger 
columns), and the cost of leasing land cl. The total construction cost cc0 = n0f0cc for the first 
two floors, and then grows at rate gc = 10% for all floors above two. Equation 6 shows that 

                                                
3 Note that cf = 0 in this model for simplification purposes. The reason is that the model assesses the value of flexibility 
assuming that the flexibility is available. The real value of a design thus takes the measured NPV and subtracts from it the 
real acquisition cost of the flexibility. As long as this difference is positive (i.e. NPV – cf (real) > 0), it is worth incorporating 
the flexibility into the system. 



total cost Ct includes recurring operating cost ktcr, land leasing cost cl, and expansion cost ce. 
Variable cc is measured based on the growth in construction cost gC times the number of 
additional parking space built at time t. Deterministic demand for parking space Dt in year t is 
modeled using Equation 7, where α = additional demand by project midlife (year 10) + 
additional demand by final year (year 20), β = - ln(additional demand by year 10/α) / (10 – 1), 
and Df is final demand at year 20. The model assumes that D1 = 750 parking spaces, 
additional demand by year 10 = 750, and additional demand by final year = 250, such that α 
= 1,000 and β = 0.15. Under this framework, an example design vector for the inflexible 
system is simply f0, the initial number of floors. Here ft = 0 for ∀ t, and therefore kt = k0. The 
optimal design has six floors (f0* = 6), leading to NPV = $10.6 million.  
 
Step 2: Finding Representative Uncertainty Scenarios. This step finds a representative set 
of scenarios for the major uncertainty sources affecting lifecycle performance. It also 
incorporates stochasticity in the basic model, using the following equation: 
 

Dt+1
S = gt(1 + Dt)   ( 8 ) 

 
In Equation 8, Dt is calculated as before, although now D1, additional demand by year 10, and 
additional demand by final year are random variables sampled from a uniform distribution 
with values ± 50% off the initial projection. Inter-annual demand growth gt is modeled using 
Geometric Brownian Motion (GBM): gt = gpdt + σdWt√dt, where gp = Dt/Dt-1 – 1 is the 
projected inter-annual demand growth obtained using the stochastic version of the demand 
model, dt = 1 year time increment, σ = 15% is the assumed volatility of demand. Variable 
dWt is the standard Wiener process, in this case sampled from a uniform distribution U ~ (-1, 
1) instead of a normal distribution for better computational efficiency. Using this model, the 
rigid design (f0* = 6) gives rise to an average NPV (or expected NPV, ENPV) ENPVinflex. = 
$7.0 million under 2,000 stochastic demand scenarios. 
 
Figure 1 shows a handful of example scenarios alongside the most likely deterministic 
demand scenario modeled in step 1. At the moment there is no systematic approach to select 
a representative set of uncertainty scenarios, besides relying on expert inputs. Readers are 
referred to Morgan and Henrion (1990) for more systematic techniques to elicit scenarios and 
probability distributions. For demonstration purposes, these authors suggest looking at the 
growth occurring in initial years 1-5. These years are crucial as demand is assumed to taper 
off to an asymptotical value in year 20. 
 
The approach here is to split scenarios into five growth categories. Five growth parameters β 
are shown in Table 3, giving rise to the representative scenarios in Appendix Figure 6. The 
percentage increase is calculated from the realized demand scenario. The mid-values provide 
a breaking point to assign one stochastic scenario to one category. For example, stochastic 
scenarios with growth above mid-value 123% in years 1 to 5 will be assigned to category 1, 
while scenarios with growth less than 38% will be assigned to category 5. 
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Figure 1 Example demand scenarios generated using the stochastic demand model 

alongside the most likely demand projection 
 

Table 3: Categories of representative demand scenarios based on percentage 
increase from years 1 to 5 

Category Growth 
parameter β  

Percentage 
increase Mid-value 

1 0.990 131% 123% 
2 0.500 115% 100% 
3 0.250 84% 68% 
4 0.125 52% 38% 
5 0.050 24% 

  
Step 3: Identify/Generate Flexibility in System Design and Management. This example 
focuses on the flexibility to expand capacity, extending the work by de Neufville et al. (2006). 
While there are many design procedures available to look systematically into flexible 
strategies and design enablers, these are taken from the previous study to satisfy the needs of 
the demonstration, and for brevity. Generating flexibility and identifying enablers in design 
are in fact topics of active research (Cardin 2012). 
 
The design vector for the flexible system is: [a1-4, a9-12, a17-20, dr, ft, f0]. This vector includes 
both decision rules and design variables. Decision rules are described conceptually for 
brevity. They are implemented using logical programming statements in Excel® – i.e. 
IF(logical condition, outcome if true, outcome if false). Decision rules a1-4, a9-12, 
and a17-20 state respectively whether it is possible or not to expand capacity during years 1-4, 
9-12, and/or 17-20 by taking binary values (Yes = 1, No = 0). It may not make sense for 
some decision-makers to allow expansion in the early years of the project, or at the end. 
Similarly, some decision-makers may prefer not to allow expansion in years 9-12 to study 
mid-life evolution of the project. Decision rule dr states how many consecutive years demand 
must be higher than installed capacity to allow expansion. For example, dr = 1 means a 
(risk-seeking) decision-maker will observe demand for just one year and will go ahead with 
expansion if demand was higher than installed capacity. The design variable ft states how 



many floors are added at each expansion phase. These decision rules are applied at the end of 
every year, and provide alternatives to suit risk-averse, risk-neutral, and risk-seeking 
decision-makers. They do not, however, represent all possible decision rules available for this 
design problem, but possible examples to demonstrate the catalogue technique.  
 
Many combinations of decision rules and design variables exist to enable and manage the 
flexibility, each leading to a different operating plan. It is not clear what combination or 
operating plan gives better lifecycle improvement compared to a fixed design. Furthermore, 
one operating plan may be well suited for a particular demand scenario, but not necessarily 
for another. It is better to adapt the operating plans depending on uncertainty outcomes. 
 
Table 4 summarizes the flexible decision rules and design variables – also called factor – 
used in this example application, leading to 33 x 23 = 216 possible operating plans. A level 
refers to the value a decision rule and/or design variable can take. 
 

Table 4: Summary of flexible decision rules and design variables (i.e. factors) 
investigated in this study. Each combination leads to one operating plan 

DVs and 
DRs Factor Description Levels 

- o + 
a1-4 Expansion allowed in years 1-4 No  Yes 
a9-12 Expansion allowed in years 9-12 No  Yes 
a17-20 Expansion allowed in years 17-20 No  Yes 

dr Expansion decision rule (years) 2 3 4 
ft Number of floors expanded by 1 2 3 
f0 Number of initial floors 4 5 6 

 
Step 4: Construct the Design Catalogue. aOFAT is used to accelerate the search process for 
the design catalogue. The exploration process for example scenario 1 in Figure 6 (see 
Appendix) is summarized in Table 5. The initial design and exploration sequence are selected 
randomly, as suggested by Frey and Wang (2006). The baseline operating plan is described 
by the vector [a1-4, a9-12, a17-20, dr, ft, f0] = [No, No, No, 3, 3, 6]. 
 

Table 5: Description and output of each iteration in the aOFAT sequence 

Iteration DV/DR 
changed: 

DV/DR Level 
changed to: 

NPV 
Output 

(million) 

Best NPV 
output so far? 

(million) 

Keep 
change? 

1   $13.4   
2 ft 1 $12.7 $13.4 No 
3 ft 2 $13.5 $13.4 Yes 
4 f0 4 $8.9 $13.5 No 
5 f0 5 $11.1 $13.5 No 
6 a9-12 Yes $13.5 $13.5 No 
7 dr 2 $13.5 $13.5 No 
8 dr 4 $13.5 $13.5 No 
9 a17-20 Yes $13.5 $13.5 No 
10 a1-4 Yes $14.6 $13.5 Yes 



 
The initial vector produces NPV = $13.4 million using the baseline model in step 1. Decision 
rule factor ft is changed from value ft = 3 to ft = 1, leading to NPV = $12.7 million. Since the 
response is not improved, the decision rule is set back to its original value, and then the 
response using ft = 2 is measured. Since NPV = $13.5 million is an improvement compared to 
the initial design vector at NPV = $13.4 million, ft = 2 is kept. The analysis then moves on to 
other design variables and decision rules, until all factor levels have been explored once. 
 
The operating plan for scenario 1 is described by vector [a1-4, a9-12, a17-20, dr, ft, f0] = [Yes, No, 
No, 3, 2, 6]. This operating plan states that if demand grows very fast in early years, capacity 
expansion should be allowed in years 1-4 only if demand is higher than installed capacity for 
three consecutive years, be done two floors at a time in each expansion phase, and start with 
an initial design of six floors to capture as much capacity as possible. Preparing for fast 
expansion makes sense intuitively for scenario 1, since it has the fastest initial growth. The 
same approach is used to generate a flexible operating plan for each representative demand 
scenario. This leads to the complete design catalogue summarized in Table 6. 
 

Table 6: Design catalogue 

DVs and DRs Op. Plan 1 Op. Plan 2 Op. Plan 3 Op. Plan 4 Op. Plan 5 
a1-4 Yes Yes Yes Yes No 
a9-12 No Yes Yes Yes Yes 
a17-20 No No No No Yes 

dr 3 2 2 2 4 
ft 2 2 2 1 1 
f0 6 6 4 4 4 

 
Step 5: Evaluate the Lifecycle Performance of the Catalogue. This step simulates the 
ability of the system operator to choose between different flexible operating plans, based on 
demand observations. Figure 2 shows an example stochastic scenario alongside the original 
demand projection. Since growth is about 35% between years 1-5 (from 690 to 931), this 
scenario is associated to operating plan 5. 
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Figure 2 Example simulated demand scenario assigned to operating plan 5 

Figure 3 shows the lifecycle effect of the operating plan on an Excel® implementation of the 
DCF model, leading to NPV = $17.4 million. Even though the operating plan is relatively 



conservative in the first few years by making expansion difficult, it still enables an aggressive 
series of expansion (fourth row from top) after year 5, as demand picks up later. 
 
A Monte Carlo simulation is performed with 2,000 demand scenarios. Each scenario is 
associated to one of the five operating plans. The design variables and decision rules 
associated to an operating plan lead to a different sequence of expansion for each scenario, 
leading each time to a different NPV outcome. 
 
Figure 4 shows the cumulative distribution functions – also referred as target curves – for the 
most valuable inflexible baseline design with six floors, and using the design catalogue. The 
target curve resulting from the catalogue approach dominates stochastically the one from the 
inflexible 6-floor design. 
 
Year 0 1 2 3 4 5 6 7 8 9 10
Realised demand 690                733                964              1,088             931                986            1,104            1,310           1,420           1,305           
Capacity -                 800                800                800              800                800                800            1,000            1,200           1,400           1,600           

Expansion? expand expand expand expand
Expansion (using expansion operating plan)?
Build extra capacity 0 0 0 0 0 0 200 200 200 200 0
Revenue $0 $6,900,000 $7,333,222 $8,000,000 $8,000,000 $8,000,000 $8,000,000 $10,000,000 $12,000,000 $14,000,000 $13,050,245
Operating costs $0 $1,600,000 $1,600,000 $1,600,000 $1,600,000 $1,600,000 $1,600,000 $2,000,000 $2,400,000 $2,800,000 $3,200,000
Land leasing costs $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000
Expansion cost $0 $0 $0 $0 $4,259,200 $4,685,120 $5,153,632 $5,668,995 $0
Cashflow $0 $1,700,000 $2,133,222 $2,800,000 $2,800,000 $2,800,000 -$1,459,200 -$285,120 $846,368 $1,931,005 $6,250,245
DCF $1,517,857 $1,700,592 $1,992,985 $1,779,451 $1,588,795 -$739,276 -$128,974 $341,834 $696,340 $2,012,412
Present value of cashflow $26,339,961
Capacity cost for up to two levels $6,400,000
Capacity costs for levels above 2 $7,392,000
Net present value $8,947,961
Total initial cost $17,392,000  
Figure 3 DCF analysis resulting from application of operating plan 5, under scenario 

shown in Figure 2. Only years 1-10 are shown out of a 20 years lifecycle 
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Figure 4 Cumulative distribution function – or target curves – for the inflexible 6-floor 
baseline design, and using the design catalogue 

A distribution of operating plan assignments is shown in Figure 5. The relative frequency is 
biased against high growth scenarios, which do not occur as frequently as other scenarios.  
 
Table 7 summarizes results according to different evaluation criteria: ENPV, 5th percentile 
(P5) value at risk, P95 value at gain, standard deviation, expected initial investment, and 
expected value of flexibility. Differences between ENPV values obtained with the catalogue 
and for the baseline system design represents the expected value generated or recognized by 



considerations of flexibility, and using the catalogue technique. It is worth nearly $3.2 million, 
a 40% improvement compared to the inflexible baseline design with six floors. 
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Figure 5 Relative frequency of each operating plan to each demand scenario 

 

Table 7: Multi-criteria evaluation of the design alternatives for each evaluation 
technique. All values in $ million 

 Deterministic Inflexible Catalogue Best? 
ENPV 10.6 8.0 11.2 Catalogue 
P5 (Value At Risk) N/A -10.8 -4.2 Catalogue 
P95 (Value At Gain) N/A 17.7 23.3 Catalogue 
Standard Deviation N/A 8.9 8.3 Catalogue 
E[Initial Investment] 22.7 22.7 15.2 Catalogue 
E[Value of flexibility] - - 3.2  

Discussion 
The analysis above has two important benefits, observed in the example application. First, it 
improved the expected lifecycle performance of the system compared to the baseline design 
obtained via standard practice, by explicitly considering uncertainty in the early conceptual 
phase. It recognized in the design evaluation process that operators would adapt intelligently 
to different scenarios. This flexibility has value that needs to be considered explicitly in early 
design phases, and embedded physically in the design. Otherwise, design alternatives offering 
less performance may be selected and implemented.  
 
A simple capacity expansion strategy brought significant value improvement in this case, in 
line with the results reported in the literature on real options analysis and flexibility in 
engineering design (de Neufville and Scholtes 2011; Nembhard and Aktan 2010; Trigeorgis 
1996). Here, value improvements stemmed from the ability to reduce downside losses when 
demand was not growing fast enough, by reducing initial investment, and by avoiding 
unnecessary capacity deployment. A flexible design also positioned the system to capture 
more upside demands, by allowing the system to deploy more parking capacity if needed. 
This strategy is therefore suited for different risk profiles, as measured by the different 
metrics (e.g. P5, P95, standard deviation, E[Initial Investment]). The analysis here only 
considered one flexibility strategy, but more exist (e.g. switch product input/output, defer 
investment until favorable market conditions, temporarily shut down to reduce downside 



losses, etc.) (Trigeorgis 1996). This observation suggests that there might be even more value 
available from flexibility in design thinking. Also, this strategy was effective for this system, 
but every system is different, hence the need to conduct this analysis on a case-by-case basis. 
 
Second, the design catalogue technique reduced the number of alternatives to explore, thus 
addressing the computational issue highlighted in introduction. Only ten iterations were 
necessary for each scenario to construct the catalogue. This contrasts favorably (i.e. less than 
5%) to an exhaustive search requiring the analysis of 216 combinations in this example. This 
would imply significant time and resources if a more detailed and higher fidelity model was 
used, such as in the oil and gas case study by Lin et al. (2009), requiring hours and days of 
computation to analyze one scenario. The analysis presented here is well suited for 
computational power that is available today. Furthermore, it can be tailored to the 
engineering system at hand, considering more or less scenarios and operating plans 
depending on the needs, and available resources. 

Limitations and Results Validity 
The cause and effect relationships reported here depend evidently on the modeling 
assumptions. Different values for the design variables, parameters, and decision rules may 
lead to different conclusions. The results are nonetheless valid and reliable in this case study 
because the same set of assumptions was used to analyze each scenario and design 
alternative.  
 
One can assume that the results are generalizable to other engineering systems. The catalogue 
technique was used to analyze flexibility in real estate development project (Cardin 2007), 
and in mining operations (Cardin, de Neufville, and Kazakidis 2008), leading to similar 
conclusions. Although current applications support the claim of generalizability, more 
applications are needed to further validate the approach. 
 
Another issue is that the set of representative scenarios in step 2 was chosen based on the 
authors’ inputs. There was nothing special about this particular set. Others could have been 
chosen, leading to different operating plans, catalogue, and results. There is a need for more 
research to find a better approach to generating this representative set, to determine useful 
criteria for terminating the search, and choosing the right number of scenarios. The work 
done in probability elicitation techniques (Brown 1968; Clemen and Winkler 1999; Morgan 
and Henrion 1990) represents an interesting area for further exploration.  
 
As mentioned above, only capacity expansion was analyzed in this case study, but more 
flexibility strategies exist. More work is needed to extend the analysis considering more real 
options and flexibility alternatives. Also, more work is needed to understand the benefits as 
compared to full factorial analysis, and other optimizations techniques to explore the design 
space for each representative scenario. 
 
Lastly, there is no guarantee that the optimal catalogue can be found using this technique. As 
mentioned by Frey and Wang (Frey and Wang 2006) for a system with n factors of 2-levels, 
the response can reach up to 80% on average of the optimal solution. This conclusion may 
not directly apply here since more levels for each factor were explored. On the other hand, 
the 40% improvement in expected lifecycle performance shows that, as compared to a 
baseline design, the approach is worthwhile for designers having limited time and 
computational resources. It produces a good enough solution, and does not require significant 
analytical and computational resources. 



Conclusions 
This paper presented a methodology to improve current systems design and evaluation 
practice that often relies on simplifying assumptions regarding the main uncertainty drivers 
affecting lifecycle performance. The proposed approach relies on a set of representative 
uncertainty scenarios, constructions of a design catalogue, and notions of flexibility in 
engineering design. Each flexible operating plan is devised to provide an appropriate 
adaptation plan to each uncertainty scenario. This enables recognizing intelligent managerial 
decisions in operations, stemming from the flexibility embedded early on in the systems 
design.  
 
The catalogue approach was applied to the analysis of an example infrastructure system. 
Considerations of flexibility in the early design showed up to 40% improvements in expected 
lifecycle performance, as compared to the baseline design developed from standard design 
and evaluation practice. The analysis required exploring less than 5% of the design space, 
representing significant economies in terms of time and analytical resources. 
 
More work is needed to fully validate the approach across a broader range of engineering 
systems. More efforts are needed to develop better approaches for selecting the representative 
set of uncertainty scenarios. Similarly, computational efficiency needs to be explored more 
thoroughly in comparison to full factorial analysis, and other optimizations techniques. 
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Appendix 
Table 8 Master table summarizing design variables (DV), parameters (DP), 
constraints (C), and objective functions  (O) for the parking garage system. 

Symbol Description 
Upper/
Lower 
Bounds 

Initial Value Units Type 

cc 
Construction cost per parking 
space - 16,000 [$] DP 

cl Annual leasing land cost - 3,600,000 [$] DP 
cr Operating cost per parking space - 2,000 [$] DP 
cct Total construction cost at year t - f(cc, gc, k0) [$] C 
Ct Total cost at year t - f(cct, ce, cl, cr, kt) [$] C 
f0 Number of initial floors at year 0 2 - 9 6 [floors] DV 

gC Construction cost growth per 
floor above two floors - 10% [%] DP 

kt 
Total parking space capacity at 
year t 

400 - 
1,800 f(f0, n0, ft) [spaces] C 

n0 
Initial number of parking 
space/floor - 200 [spaces] DP 

NPV Net Present Value None - [$] O 
p Price per parking space - 10,000 [$] DP 
Rt Total revenues at year t None f(kt, p, Dt) [$] C 
r Discount rate - 12% [%] DP 
T Project duration - 20 [years] DP 

 
(Below apply to flexible 
design)     

a1-4 
Expansion allowed in years       
1 to 4 

Yes - 
No Yes - DR 

a9-12 
Expansion allowed in years       
9 to 12 

Yes - 
No Yes - DR 

a17-20 
Expansion allowed in years     
17 to 20 

Yes - 
No Yes - DR 

ce Expansion cost at time t - f(cc, ft, gc, kt, n0)   
cf Cost of acquiring the flexibility - 0 [$] C 
cp Percentage cost of flexibility - 0% [%] DP 

dr Number of years              
demand > capacity 2 - 4 2 [years] DR 

fmax Maximum number of floors - 9 [floors] C 

ft 
Number of floors expanded      
in year t 1 - 3 1 [floors] DV 
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Figure 6 Set of representative demand scenarios based on the exponential demand 
model with β = 0.990, 0.500, 0.250, 0.125, and 0.050. 
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